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Abstract 97 

Application container technologies, also known as containers, are a form of operating system 98 
virtualization combined with application software packaging. Containers provide a portable, 99 
reusable, and automatable way to package and run applications. This publication explains the 100 
potential security concerns associated with the use of containers and provides recommendations 101 
for addressing these concerns. 102 
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 127 
Executive Summary 128 

Operating system (OS) virtualization provides a virtualized OS for each application to keep each 129 
application isolated from all others on the server. Each application can only see and affect itself. 130 
Recently, OS virtualization has become increasingly popular due to advances in its ease of use 131 
and an increased focus in developer agility as a key benefit. Today’s OS virtualization 132 
technologies are primarily focused on providing a portable, reusable, and automatable way to 133 
package and run apps. The terms application container or simply container are frequently used 134 
to refer to these technologies. 135 

The purpose of the document is to explain the security concerns associated with container 136 
technologies and make practical recommendations for addressing those concerns when planning 137 
for, implementing, and maintaining containers. Many of the recommendations are specific to a 138 
particular layer within the container technology stack, which is depicted in Figure 1. 139 

Organizations should follow these recommendations to help ensure the security of their container 140 
stack implementations and usage: 141 

Tailor the organization’s processes to support the new way of developing, running, and 142 
supporting applications made possible by containerization. 143 

The introduction of containerization technologies might disrupt the existing culture and software 144 
development methodologies within the organization. Traditional development practices, patching 145 
techniques, and system upgrade processes might not directly apply to a containerized 146 
environment, and it is important that the employees within the organization are willing to adapt 147 
to a new model. New processes can consider and address any potential culture shock that is 148 
introduced by the technology shift. Education and training can be offered to anyone involved in 149 
the software development lifecycle. 150 

Use container-specific OSes instead of general-purpose ones to reduce attack surfaces. 151 

A container-specific OS is a minimalist OS explicitly designed to only run containers, with all 152 
other services and functionality disabled, and with read-only file systems and other hardening 153 
practices employed. When using a container-specific OS, attack surfaces are typically much 154 
smaller than they would be with a general-purpose OS, so there are fewer opportunities to attack 155 
and compromise a container-specific OS. Accordingly, whenever possible, organizations should 156 
use container-specific OSes to reduce their risk. However, it is important to note that container-157 
specific OSes will still have vulnerabilities over time that require remediation. 158 

Automate compliance with container runtime configuration standards to minimize 159 
vulnerabilities. 160 

Organizations should have a configuration standard for each type of container runtime they use 161 
that establishes the requirements for the container runtime’s configuration settings. Deviations 162 
from the standard could create weaknesses that attackers can take advantage of to compromise 163 
the container runtime or the containers running on top of the runtime. Accordingly, organizations 164 
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should use tools or processes that continuously assess container runtime configuration settings 165 
and immediately act to correct any deviations from the approved standard. 166 

 167 

Figure 1: Container Technology Stack 168 

 169 

Group containers by relative sensitivity and only run containers of a single sensitivity level 170 
on a single host OS kernel for additional defense in depth. 171 

While most container runtime environments do an effective job of isolating containers from each 172 
other and from the host OS, in some cases it may be an unnecessary risk to run apps of different 173 
classification levels together on the same host OS. Grouping containers by purpose and 174 
sensitivity provides additional defense in depth. By grouping containers in this manner, it will be 175 
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much more difficult for an attacker who compromises one of the groups to expand that 176 
compromise to other groups. This approach also ensures that any residual data, such as caches or 177 
local volumes mounted for temp files, stays within its security zone. 178 

In larger-scale environments with hundreds of hosts and thousands of containers, this grouping 179 
must be automated to be practical to operationalize. Fortunately, common orchestration 180 
platforms typically include some notion of being able to group apps together, and container 181 
security tools can use attributes like container names and labels to enforce security policies 182 
across them. 183 

Adopt container-specific vulnerability management tools and processes for images to 184 
prevent compromises. 185 

Traditional vulnerability management tools make many assumptions about host durability, app 186 
update mechanisms, and update frequencies that are fundamentally misaligned with a 187 
containerized model. These tools are often unable to detect vulnerabilities within containerized 188 
stacks, leading to a false sense of safety. Organizations should use tools that take the pipeline-189 
based build approach and immutable nature of containers and images into their design to provide 190 
more actionable and reliable results. 191 

These tools and processes should take both image software vulnerabilities and configuration 192 
settings into account. Organizations should adopt tools and processes to validate and enforce 193 
compliance with secure configuration best practices for images. This should include having 194 
centralized reporting and monitoring of the current compliance state of each image, and 195 
preventing non-compliant images from being run. 196 

Consider using hardware-based countermeasures to provide a basis for trusted computing. 197 

Security should extend across all layers of the container stack. The current way of establishing 198 
trusted computing for all layers is to use a hardware root of trust. Within this trust is stored 199 
measurements of the host’s firmware, software, and configuration data. Validating the current 200 
measurements against the stored measurements before booting the host provides assurance that 201 
the host can be trusted. The chain of trust rooted in hardware can be extended to the OS kernel 202 
and the OS components to enable cryptographic verification of boot mechanisms, system images, 203 
container runtimes, and container images. Trusted computing provides the most secure way to 204 
build, run, orchestrate, and manage containers. 205 

 206 

  207 
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1 Introduction 303 

1.1 Purpose and Scope 304 

The purpose of the document is to explain the security concerns associated with application 305 
container technologies, also known as containers, and make practical recommendations for 306 
addressing those concerns when planning for, implementing, and maintaining containers. The 307 
recommendations are intended to apply to most or all application container technologies.   308 

All forms of virtualization other than application containers, such as virtual machines, are 309 
outside the scope of this document. 310 

In addition to application container technologies, the term “container” is used to refer to concepts 311 
such as software that isolates enterprise data from personal data on mobile devices, and software 312 
that may be used to isolate applications from each other on desktop operating systems. While 313 
these may share some attributes with application container technologies, they are out of scope for 314 
this document. 315 

This document assumes readers are already familiar with securing the technologies supporting 316 
and interacting with application container technologies. These include the following:  317 

 The layers under application container technologies, including hardware, hypervisors, and 318 
operating systems; 319 

 The client endpoint devices that use the applications within the containers; and 320 

 The administrator endpoints used to manage the applications within the containers and the 321 
containers themselves. 322 

Appendix A contains pointers to resources with information on securing these technologies. 323 
Sections 3 and 4 offer additional information on security considerations for container-specific 324 
operating systems. All further discussion of securing the technologies listed above is out of scope 325 
for this document. 326 

1.2 Document Structure 327 

The remainder of this document is organized into the following sections and appendices:  328 

 Section 2 introduces containers, including their architectures, technical capabilities, 329 
attributes, and uses. 330 

 Section 3 explains the major risks in the container technology stack. 331 

 Section 4 discusses possible countermeasures for the risks identified in Section 3 and makes 332 
recommendations for selecting and using countermeasures. 333 

 Section 5 defines threat scenario examples for containers. 334 

 Section 6 presents actionable information for planning, implementing, operating, and 335 
maintaining a container technology stack. 336 
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 Section 7 provides a conclusion for the document. 337 

 Appendix A lists NIST resources for securing systems and system components outside the 338 
container technology stack. 339 

 Appendix B lists the NIST Special Publication 800-53 security controls and NIST 340 
Cybersecurity Framework subcategories that are most pertinent to application container 341 
technologies, explaining the relevancy of each. 342 

 Appendix C provides an acronym and abbreviation list for the document. 343 

 Appendix D presents a glossary of selected terms from the document. 344 

 Appendix E contains a list of references for the document. 345 

  346 
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2 Introduction to Application Containers  347 

NIST Special Publication (SP) 800-125 [1] defines virtualization as “the simulation of the 348 
software and/or hardware upon which other software runs.” Virtualization has been in use for 349 
many years, but it is best known for enabling cloud computing. In cloud environments, hardware 350 
virtualization is used to run many instances of operating systems (OS) on a single physical server 351 
while keeping each instance separate. This allows more efficient use of hardware and supports 352 
multi-tenancy.  353 

In hardware virtualization, each OS instance interacts with virtualized hardware. Another form of 354 
virtualization known as operating system virtualization has a similar concept; it provides a 355 
virtualized OS for each application to keep each application isolated from all others on the 356 
server. Each application can only see and affect itself. 357 

Until recently, OS virtualization has not been widely used because hardware virtualization was 358 
considered easier to set up and run in order to achieve isolation. However, OS virtualization has 359 
become increasingly popular due to advances in its ease of use and an increased focus in 360 
developer agility as a key benefit. Today’s OS virtualization technologies are primarily focused 361 
on providing a portable, reusable, and automatable way to package and run apps. The terms 362 
application container or simply container are frequently used to refer to these technologies. The 363 
term is meant as an analogy to shipping containers, which provide a standardized way of 364 
grouping disparate contents together while isolating them from each other.  365 

Containers themselves are not new; various implementation of containers have existed since the 366 
early 2000s, starting with Solaris Zone and FreeBSD jails. Support initially became available in 367 
Linux in 2008 with the Linux Container (LXC) technology built into nearly all modern 368 
distributions. More recently, projects such as Docker and rkt have provided additional 369 
functionality designed to make OS component isolation features easier to use and scale. 370 
Container technologies are also available on the Windows platform beginning with Windows 371 
Server 2016. The fundamental architecture of all these implementations is consistent enough so 372 
that this document can discuss containers in detail while remaining implementation agnostic. 373 

This section provides an introduction to containers for servers. First, it explains the architecture 374 
of containers, including all the major components typically found in a container implementation. 375 
Next, it describes the major technical capabilities and fundamental attributes of containers. 376 
Finally, the section briefly lists common uses for containers. 377 

2.1 Container Architecture 378 

Explaining the architecture of containers is made easier by comparing them with the architecture 379 
of virtual machines (VMs) from hardware virtualization technologies, which many readers are 380 
already familiar with. Figure 2 shows the VM architecture and two container architectures, one 381 
without VMs and one with. 382 
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 383 

 384 

Figure 2: Virtual Machine and Container Architectures 385 

Both VMs and containers allow multiple apps to share the same physical infrastructure, but they 386 
use different methods of separation. VMs use a hypervisor that provides hardware-level isolation 387 
of resources across VMs. Each VM sees its own virtual hardware and includes a complete guest 388 
OS in addition to the app and its data. VMs allow different OSes, such as Linux and Windows, to 389 
share the same physical hardware. 390 

With containers, multiple apps share the same OS instance but are segregated from each other. 391 
Containers share the same OS kernel, so they cannot be run without a host OS present. In many 392 
cases, users will deploy containers inside of VMs, but this is not a requirement. Also, containers 393 
are OS-family specific; a Linux host can only run containers built for Linux, and a Windows host 394 
can only run Windows containers. 395 

Containers can be run on an OS installed on “bare metal”, as shown in the middle of Figure 2, or 396 
an OS that runs within a VM, as shown on the right side of Figure 2. While containers are 397 
sometimes thought of as the next phase of virtualization, surpassing hardware virtualization, the 398 
reality for most organizations is less about revolution than evolution. Containers and hardware 399 
virtualization not only can, but very frequently do, coexist well and actually enhance each other’s 400 
capabilities. VMs provide many benefits, such as strong isolation, OS automation, and a wide 401 
and deep ecosystem of solutions. Organizations do not need to make a false choice between 402 
containers and VMs. Instead, organizations can continue to use VMs to deploy, partition, and 403 
manage their hardware, while using containers to package their apps and utilize each VM more 404 
efficiently. 405 
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The container technology stack, depicted in Figure 2, includes the following components: 406 

• Host operating system: Containers share a common kernel that is part of the host 407 
operating system. It sits below the containers and provides OS capabilities to them. The 408 
host OSes used for running containers can generally be categorized into two types: 409 
o General-purpose OSes like Red Hat Enterprise Linux, Ubuntu, and Windows Server 410 

that can be used for running many kinds of apps and can have container-specific 411 
functionality added to them. 412 

o Container-specific OSes, like CoreOS [2], Project Atomic [3], and Google Container-413 
Optimized OS [4], which are minimalistic OSes explicitly designed to only run 414 
containers. They typically do not come with package managers, and they actively 415 
discourage running applications outside containers. A container-specific OS includes 416 
the container runtime environment and a subset of core system administration tools. 417 
Often, these OSes use a read-only file system design to reduce the likelihood of an 418 
attacker being able to persist data within them, and they also utilize a simplified 419 
upgrade process since there is little concern around application compatibility. 420 

• Container runtime: The layer above the host OS is the container runtime. It abstracts 421 
the underlying host OS from each container, such that each container sees its own 422 
dedicated view of the OS and is isolated from other containers running concurrently. The 423 
container runtime also provides management tools and application programming 424 
interfaces (APIs) to allow users to specify how to run containers on a given host. The 425 
runtime abstracts the complexity of manually creating all the necessary configurations 426 
and simplifies the process of starting, stopping, and operating containers. Examples of 427 
runtimes include Docker [5], LXC [6], rkt [7], and the Open Container Initiative Daemon 428 
[8]. 429 

• Images: Images are packages that contain all the files required to run a container. For 430 
example, an image to run Apache would include the httpd binary, along with associated 431 
libraries and configuration files. An image is executed within a container. Unlike a VM, 432 
an image does not contain an OS because that is provided by the host OS. Images are 433 
typically designed to be portable across machines and environments, so that an image 434 
created in a development lab can be easily moved to a test lab for evaluation, then copied 435 
into a production environment to run. Images often use techniques like layering and copy 436 
on write (in which shared master images are read only and changes are recorded to 437 
separate files) to minimize their size on disk and improve operational efficiency. 438 

• Registry: Images are typically stored in central locations to make it easy to share, find, 439 
and reuse them across hosts. Registries are services that allow developers to easily store 440 
images as they are created, tag and catalog images to aid in discovery and reuse, and find 441 
and reuse images that others have created. When an image needs to be promoted from 442 
dev to test or production, the image can be pulled from this central registry. Registries are 443 
effectively special purpose file sharing apps and may be self-hosted or consumed as a 444 
service, such as with Amazon EC2 Container Registry [9] or Docker Hub [10]. 445 

• Microservice: Sets of containers that work together to compose an application are 446 
referred to as microservices. Unlike traditional architectures, which divide an application 447 
into a few tiers and have a component for each tier, in a container architecture a single 448 
app is often divided into many more components. With this modular approach, each 449 
container may have a single well-defined function. This allows more granular scaling of 450 



NIST SP 800-190 (DRAFT)  APPLICATION CONTAINER SECURITY GUIDE 
    

6 

the app because additional resources can be provided just to the containers with the 451 
function that needs them. It also makes iterative development easier because functionality 452 
is more self-contained.  453 

• Orchestrators: Multiple container hosts can be grouped together and centrally managed 454 
by orchestration tools, also known as orchestrators. These are responsible for monitoring 455 
resource consumption, job execution, and machine health across multiple servers and/or 456 
VMs. This abstraction allows a developer to simply describe how many containers need 457 
to be running a given image and what resources, such as memory, processing, and disk 458 
need to be allocated to each. The orchestrator knows what is available within the cluster 459 
and dynamically assigns which containers will run on which hosts. Further, the 460 
orchestrator will monitor the health of hosts and containers and, depending on its 461 
configuration, may automatically restart containers on new hosts if the hosts they were 462 
initially running on failed. Many orchestrators can also enable cross-host container 463 
networking and service discovery. Examples of orchestrators include Kubernetes [11], 464 
Mesos [12], and Docker Swarm [13]. 465 

These components all play roles in running a containerized app. For example, in Figure 2, 466 
assume the user wants to run an app with three images. Rather than manually running containers 467 
for each image, the user tells the orchestrator the attributes of the app, including how many 468 
instances of each image is required and how many resources each container requires. The 469 
orchestrator knows the state of the machines in the cluster, including availability and resource 470 
consumption of each. The orchestrator then pulls the required images from the registry and runs 471 
them on containers across the cluster based on resource availability. 472 

Note that all these components are not necessary to run containers. For example, a small, simple 473 
container implementation could omit a full-fledged orchestrator. 474 

 475 
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 476 

Figure 3: Interactions of Container Deployment Components 477 

2.2 Container Technical Capabilities 478 

The technical capabilities of containers vary by host OS. Containers are fundamentally a 479 
mechanism to give each app a unique view of a single OS, so the tools for achieving this 480 
separation are largely OS family-dependent. For example, the methods used to isolate processes 481 
from each other differ between Linux and Windows. However, while the underlying 482 
implementation may be different, container runtimes provide a common interface format that 483 
largely abstracts these differences from users. 484 
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All container platforms require the following technical capabilities provided by the host OS: 485 

• Namespace isolation, which limits the resources a container may interact with. This 486 
includes file systems, network interfaces, interprocess communications, host names, user 487 
information, and processes. Namespace isolation ensures that applications and processes 488 
inside a container only see the physical and virtual resources allocated to that container. 489 
For example, if you run ‘ps –A’ inside a container running Apache on a server with many 490 
other containers running other apps, you would only see httpd listed in the results. 491 
Namespace isolation also allows individual containers to have their own IP addresses and 492 
interfaces. Containers on Linux use technologies like masked process identities to 493 
achieve namespace isolation, whereas on Windows, object namespaces are used. 494 

• Resource isolation, which limits how much of a host’s resources a given container can 495 
consume. For example, if your host OS has 10 gigabytes (GB) of total memory, you may 496 
wish to allocate 1 GB each to nine separate containers. No container should be able to 497 
interfere with the operations of another container, so resource isolation ensures that each 498 
container can only utilize the amount of resources assigned to it. On Linux, this is 499 
accomplished primarily with control groups (cgroups)1, whereas on Windows job objects 500 
serve a similar purpose. 501 

• Filesystem virtualization, which allows multiple containers to share the same physical 502 
storage without the ability to access or alter the storage of other containers. While 503 
arguably similar to namespace isolation, filesystem virtualization is called out separately 504 
because it also often involves optimizations to ensure that containers are efficiently using 505 
the host’s storage through techniques like copy on write. For example, if multiple 506 
containers using the same image are running Apache on a single host, filesystem 507 
virtualization ensures that there is only one copy of the httpd binary stored on disk. If one 508 
of the containers modifies files within itself, only then will those copies be written out to 509 
storage as unique bits. On Linux, these capabilities are provided by technologies like the 510 
Advanced Multi-Layered Unification Filesystem (AUFS), whereas on Windows they are 511 
an extension of the NT File System (NTFS).  512 

2.3 Container Attributes 513 

Container technologies generally share several fundamental attributes: 514 

• Portable. There are two main aspects to this: 515 
o Portability across the development lifecycle. The images used to create containers can 516 

be built directly by app developers and then moved into test and production without 517 
modification.  518 

o Portability across underlying platforms. The same container image should be able to 519 
run broadly across a family of host OSes and across any cloud provider that supports 520 
them. 521 

• Minimal. A container only includes the specific software required to run the app within 522 
it. A container only includes the executables and libraries required by the app itself; all 523 

                                                 

1  cgroups are collections of processes that can be managed independently, giving the kernel the software-based ability to 
meter subsystems such as memory, processor usage, and disk I/O. Administrators can control these subsystems either 
manually or programmatically. 
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other OS functionality is provided by the underlying host OS. Frequently, containers are 524 
single process entities and a given container only exists to run one app. Multiple 525 
containers then work together in a microservice to compose more complex apps. 526 

• Declarative. Most container technologies have a declarative way of describing the 527 
components and requirements for the app. For example, an image for a web server would 528 
include not only the executables for the web server, but also some parseable data to 529 
describe how the web server should run, such as the ports it listens on or the 530 
configuration parameters it uses. 531 

• Immutable. Most modern container technologies implement the concept of immutability. 532 
In other words, the containers themselves are stateless entities that are deployed but not 533 
changed. When a running container needs to be upgraded or have its contents changed, it 534 
is simply destroyed and recreated with a new image containing the updates. This provides 535 
the ability for developers and support engineers to make and push changes to applications 536 
at a much faster pace. Immutability is a fundamental operational difference between 537 
containers and hardware virtualization. Traditional VMs are typically run as stateful 538 
entities that are deployed, reconfigured, and upgraded throughout their life.   539 

The immutable nature of containers also has implications for data persistence. Rather than 540 
intermingling the app with the data it uses, containers stress the concept of isolation. Data 541 
persistence should be achieved not through simple writes to the container file system, but instead 542 
by using external, persistent data stores such as databases or cluster-aware persistent volumes. 543 
Because containers are ephemeral, the data they use should be stored outside of the containers 544 
themselves so that when the next version of an app replaces the containers running the existing 545 
version, all data is still available to the new version. 546 

Modern container technologies have largely emerged along with the adoption of DevOps 547 
(development and operations) practices that emphasize close coordination between development 548 
and operational teams. The portable and declarative nature of containers is particularly well 549 
suited to these practices because they allow an organization to have great consistency between 550 
development, test, and production environments. Organizations often utilize continuous 551 
integration processes to put their apps into containers directly in the build process itself, such that 552 
from the very beginning of the app’s lifecycle, there is guaranteed consistency of its runtime 553 
environment. 554 

Containers increase the effectiveness of build pipelines due to the immutable nature of container 555 
images. Containers shift the time and location of production code installation. In non-container 556 
systems, application installation happens in production (i.e., at server runtime), typically by 557 
running hand-crafted scripts that manage installation of application code (e.g., programming 558 
language runtime, dependent third-party libraries, init scripts, and OS tools) on servers. This 559 
means that any tests running in a pre-production build pipeline (and on developers’ workstations) 560 
are not testing the actual production artifact, but a best-guess approximation contained in the 561 
build system. This approximation of production tends to drift from production over time, 562 
especially if the teams managing production and the build system are different. This scenario is 563 
the embodiment of the “it works on my machine” problem. 564 

Using containers, the full application installation happens in the build system (i.e., at compile-565 
time). The build system creates the full production artifact (i.e., the container image), which is an 566 



NIST SP 800-190 (DRAFT)  APPLICATION CONTAINER SECURITY GUIDE 
    

10 

immutable snapshot of all userspace requirements of the application (i.e., programming language 567 
runtime, dependent third-party libraries, init scripts, and OS tools). In production the container 568 
image constructed by the build system is simply downloaded and run. This solves the “works on 569 
my machine” problem since the developer, build system, and production all run the same 570 
immutable artifact. 571 

Modern container technologies often also emphasize reuse, such that a container image created 572 
by one developer can be easily shared and reused by other developers, either within his own 573 
organization or across the world. Registry services provide centralized image sharing and 574 
discovery services to make it easy for developers to find and reuse software created by others. 575 
This ease of use is also leading many popular software vendors and projects to use containers as 576 
a way to make it easy for customers to find and quickly run their software. For example, rather 577 
than directly installing an app like MongoDB on the host OS, a user can simply run a container 578 
image of MongoDB. Further, since the container runtime isolates containers from one another 579 
and the host OS, these apps can be run more safely and reliably, and users do not have to worry 580 
about them disturbing the underlying host OS. 581 

2.4 Container Uses 582 

Like any other technology, containers are not a panacea. They are a valuable tool for many 583 
scenarios, but are not necessarily the best choice for every scenario. For example, an 584 
organization with a large base of legacy off the shelf software is unlikely to be able to take 585 
advantage of containers for running most of that software since the vendors may not support it. 586 
However, most organizations will have multiple valuable uses for containers. Examples include: 587 

• Agile development, where apps are frequently updated and deployed. The portability and 588 
declarative nature of containers makes these frequent updates more efficient and easier to 589 
test. This allows organizations to accelerate their innovation and deliver software more 590 
quickly. This also allows vulnerabilities in application code to be fixed and the updated 591 
software tested and deployed much faster. 592 

• ‘Scale out’ scenarios, where an app may need to have many new instances deployed or 593 
decommissioned quickly depending on the load at a given point in time. The 594 
immutability of containers makes it easier to reliably scale out instances, knowing that 595 
each instance is exactly like all the others. Further, because containers are typically 596 
stateless, it is easier to decommission them when they are no longer needed. 597 

• Net new apps, where developers can build for a microservices architecture from the 598 
beginning, ensuring more efficient iteration of the app and simplified deployment. 599 

2.5 The Container Lifecycle 600 

Containers do not exist in a vacuum; they are typically used as part of the overall lifecycle of an 601 
app and thus interact with other systems and user personas. Figure 4 shows the basic lifecycle 602 
phases. Because organizations are typically building and deploying many different apps at once, 603 
these lifecycle phases often occur concurrently within the same organization and should not be 604 
seen as progressive stages of maturity. Instead, think of them as cycles in an engine that is 605 
continuously running. In this metaphor, each app is a cylinder within the engine, and different 606 
apps may be at different phases of this lifecycle at the same time.    607 
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This section refers to tasks performed by development and operation personas during the 608 
lifecycle. Many organizations have merged their development and operations teams into 609 
combined DevOps teams that seek to increase the integration between building and running apps. 610 
Thus, the references in this section to these personas are focused on the types of job tasks being 611 
performed, not on strict titles or team organizational structures. 612 

 613 

 614 

Figure 4: Container Lifecycle Phases 615 

2.5.1 Build phase 616 

The build phase is the portion of the lifecycle in which app components are compiled, collected, 617 
and placed into images. The build phase is mostly driven by developers who are working on 618 
creating or updating apps and packaging them in containers. The build phase typically uses build 619 
management and automation tools, such as Jenkins [14] and TeamCity [15], to assist with this 620 
“continuous integration” process. These tools take the various libraries, binaries, and other 621 
components of an application, perform testing on them, and then assemble images out of them. 622 
The build phase would normally begin with a developer creating a manifest for the app that 623 
describes how to build an image for it, and end with the build automation tool creating a ready-624 
to-run image of the app. 625 

Build Phase
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•Example tooling: Jenkins, TeamCity
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from app components
•Phase ends with: pushing the image to a 

registry

Distribution Phase
•Personas: Operations
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•Phase ends with: image pulled to run 
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Run Phase
•Personas: Operations
•Example tooling: Kubernetes, DC/OS, 

Docker
•Phase starts with: pulling an image from a 

registry and orchestrating its deployment
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2.5.2 Distribution phase 626 

Once images are created by developers, they need to be stored in a predictable location they can 627 
be deployed from. These registries are essentially just file storage for images, wrapped in APIs 628 
that enable development and operations teams to automate common tasks like uploading new 629 
images, tagging images for identification, and downloading images for deployment. Registries, 630 
such as Docker Trusted Registry [16], Quay Container Registry [17], and Amazon EC2 631 
Container Registry [9], are typically where developers output their images to at the end of the 632 
build phase. Once stored in the registry, they can be easily pulled and then run by operations 633 
personas across any environment in which they run containers. This is another example of the 634 
portability benefits of containers; the build phase may occur in a public cloud provider, which 635 
pushes an image to a registry hosted in a private cloud, which is then used to distribute images 636 
for running the app in a third location.   637 

The distribution phase typically uses extensive automation to reduce the manual activities 638 
associated with uploading and deploying images. For example, organizations may have triggers 639 
in the build phase that automatically push images to a registry once tests pass. The registry may 640 
have further triggers that automate the deployment of new images once they have been added. 641 
This automation enables faster iteration on projects with more consistent results. 642 

2.5.3 Run phase 643 

Once an image is stored in a registry, it is ready to be pulled and run within a container.  644 
Operations personas, or the automation they create, typically perform the tasks associated with 645 
deploying an image from a registry into a set of containers. This deployment process is what 646 
actually results in a usable version of the app, running and ready to respond to requests. When an 647 
image is deployed into a container, the image itself is not changed, but instead a copy of it is 648 
placed within the container and transitioned from being a dormant set of app code to a running 649 
instance of the app. Images are typically deployed from registries via orchestration tools, such as 650 
Kubernetes [11] or DC/OS [18], that are configured to pull the most up-to-date version of an 651 
image from the registry so that the app is always up-to-date. This “continuous delivery” 652 
automation enables developers to simply build a new version of the image for their app, push it 653 
to the registry, and then rely on the run phase automation tooling to deploy it to the target 654 
environment. 655 

 656 
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3 Major Risks in the Container Technology Stack 657 

This section identifies and analyzes the major risks in the container technology stack. It uses the 658 
data-centric system threat modeling approach described in NIST SP 800-154 [19] to examine a 659 
typical container stack as depicted in Figure 5. Because this analysis looks at the stack only, and 660 
not the technologies below the stack, it is applicable to most container deployments, whether 661 
using VMs or running on bare metal, at a public cloud provider or within an organization’s 662 
onsite datacenter.   663 

 664 

 665 

Figure 5: Container Technology Stack 666 

This section begins by discussing the most important operational differences between VMs and 667 
containers, which all have security implications. The rest of the section walks through the 668 
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container technology stack from lowest layer to highest layer, identifying and analyzing major 669 
risks relevant to each layer. Appendix A contains pointers to references for securing systems and 670 
system components outside the container technology stack.  671 

3.1 Operational Differences Between Containers and VMs 672 

While there are many technical differences between containers and VMs, there are also 673 
significant operational differences. These operational differences impact many aspects of 674 
container security. 675 

• Many more entities. When an app is deployed via containers and microservices, there 676 
are many more discrete components for the app than if that app were run in a more 677 
monolithic, VM-centric model. For example, a simple two-tiered web app running in 678 
VMs may only have a cluster of web server VMs on the front end and a cluster of 679 
database VMs on the backend. This same app, decomposed into microservices, may have 680 
many different front end containers, each running a different part of the web portion of 681 
the app, as well as multiple database and cache instances on the backend. These 682 
microservices make iteration and scaling easier, but result in more objects to understand, 683 
manage, and secure. Security tools and operations must be adapted to deal with this larger 684 
number of objects. 685 

• Much greater rate of change. One of the primary drivers for customers to adopt 686 
containers is the agility it gives them from a development standpoint, making it easier 687 
and faster to respond to business needs through rapid iteration of apps. Organizations 688 
may go from deploying a new version of their app every quarter, to deploying new 689 
components weekly or daily. Legacy security tools and processes often assume far less 690 
dynamic operations and may need to be adjusted to adapt to the rate of change in 691 
containerized environments. 692 

• Security is largely the responsibility of the developer. Good security practices in 693 
development have always been a core part of an effective security strategy. However, in 694 
the past, organizations often had a clear differentiation between development and 695 
operations, and the operations team often had the responsibility of monitoring and 696 
maintaining the apps after deployment. Because containers are built directly from images 697 
created by developers, the responsibility for securing those images is much further 698 
‘upstream’ with containers. For example, instead of the operations team patching a web 699 
server with a vulnerability, the developer is now responsible for performing the patching 700 
within the images and providing the new versions of the images to be run. This change in 701 
responsibilities often requires much greater coordination and cooperation between 702 
development and operations teams. 703 

• Security must be as portable as the containers. One of the key factors driving adoption 704 
of containers is their portability. Developers find great value in being able to move 705 
containers and images across many different environments, such as their developer 706 
workstation, a public cloud test environment, and a private cloud production 707 
environment. Unlike VMs, in which environments were more static and predictable, 708 
developers may move containers around many different locations during the course of 709 
normal operations. Thus, the security tools and processes used to protect them must not 710 
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make assumptions about specific cloud providers, host OSes, network topologies, or 711 
other aspects of the runtime environment which may frequently change. 712 

• Networking is much more ephemeral. VMs and bare metal servers are typically 713 
allocated static IP addresses by an administrator, and those addresses remain relatively 714 
consistent over time. For example, a given VM may be assigned an IP address when it is 715 
originally created and use that same IP address for the months or years it continues to 716 
run. Conversely, containers are typically allocated IP addresses via whatever 717 
orchestration tool is being used. The IP addresses assigned to a given container are not 718 
typically known in advance, and no administrator is normally involved in assigning them.  719 
Because containers are created and destroyed much more frequently than VMs, these IP 720 
addresses change frequently over time as well, without human involvement. This makes 721 
it difficult or impossible to protect containers using security techniques that rely on static 722 
IP addresses, such as firewall rulesets filtering traffic based on IP address. 723 

3.2 Host OS Risks 724 

3.2.1 Improper user access rights 725 

Container-specific OSes are typically used in conjunction with orchestrators that provide for 726 
container placement and scaling. In these deployments, the OS is typically not optimized to 727 
support multiuser scenarios since interactive user logon should be rare. If organizations rely on 728 
manual configuration and management, users may have greater access to the containerized apps 729 
they host than necessary. 730 

3.2.2 Host component vulnerabilities 731 

Container-specific OSes have a much smaller attack surface than that of general-purpose OSes. 732 
For example, they do not contain libraries and package managers that enable a general-purpose 733 
OS to directly run database and web server apps. However, even on container-specific OSes, 734 
there are foundational system components provided by the host OS—for example, the 735 
cryptographic libraries used to authenticate remote connections and the kernel primitives used 736 
for general process invocation and management. Like any other software, these components can 737 
have vulnerabilities and, because they exist low in the stack, these vulnerabilities can impact all 738 
the containers and applications that run on these hosts. 739 

3.3 Container Runtime Risks 740 

3.3.1 Vulnerabilities within the runtime software 741 

While relatively rare, these vulnerabilities can be particularly dangerous if they allow ‘container 742 
escape’ scenarios in which malicious software is able to use those vulnerabilities to attack 743 
resources outside of the container in which it originated, including other containers and the host 744 
OS itself. An attacker may also be able to exploit vulnerabilities to compromise the runtime 745 
software itself, and then alter that software so it allows the attacker to access containers, monitor 746 
container-to-container communications, etc. 747 
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3.3.2 Unbounded network access from containers 748 

By default in most container runtimes, individual containers are able to access each other and the 749 
host over the network. If a container is compromised and acting maliciously, allowing this 750 
network traffic may expose other resources in the environment to risk. For example, a 751 
compromised container may be used to scan the network it is connected to in order to find other 752 
weaknesses for an attacker to exploit.   753 

Egress network access is more complex to manage in a containerized environment because so 754 
much of the connection is virtualized between containers. Thus, traffic from one container to 755 
another may appear simply as encapsulated packets on the wire without an understanding of the 756 
ultimate source, destination, or payload. Tools and operational processes that are not container 757 
aware are not able to inspect this traffic or determine whether it represents a threat. 758 

3.3.3 Insecure container runtime configurations 759 

Container runtimes are complex software and typically expose many configurable options to 760 
administrators. Often, configuring them improperly can lower the relative security of the system. 761 
For example, on Linux container hosts, the set of allowed system calls is often limited by default 762 
to only those required for safe operation of containers. If this list is widened, it may expose the 763 
runtime and host to increased risk from a compromised container. 764 

Another example of an insecure runtime configuration is allowing containers to mount sensitive 765 
directories on the host. Containers should rarely make changes to the host file system and should 766 
almost never make changes to locations like /boot or /etc that control the basic functionality of 767 
the host OS. If a container is allowed to make changes to these paths, a compromised container 768 
could potentially be used to elevate privileges and attack the host itself as well as other 769 
containers running on the host.  770 

3.3.4 Shared kernel 771 

While containers provide strong software-level isolation of resources, the use of a shared kernel 772 
invariably results in a larger inter-object attack surface than seen with hypervisors. In other 773 
words, the level of isolation provided by container runtimes is not as high as that provided by 774 
hypervisors. 775 

3.4 Image Risks 776 

3.4.1 Image vulnerabilities 777 

Because images are effectively static archive files that include all the components used to run a 778 
given application, the components within this image may often be out of date and missing critical 779 
security updates. For example, if an image is created with fully up-to-date components, that 780 
image may continue to be free from vulnerabilities for days or weeks after its creation.  781 
However, at some point in the future the components included in that image will likely have 782 
vulnerabilities discovered in them, and thus the image overall will no longer be up-to-date. 783 
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Unlike traditional operational patterns in which deployed software is updated ‘in the field’ on the 784 
systems it runs on, with containers these updates must be made upstream in the images 785 
themselves, which are then redeployed. Thus, a common risk in containerized environments is 786 
deployed images having vulnerabilities because the version of the image being run does not 787 
include all the necessary updates.  788 

3.4.2 Image configuration 789 

In addition to software defects, images may also have configuration defects as well. For 790 
example, an image could be configured to run as root or include executables set to run with 791 
excessive privileges. Much like in a traditional server or VM, where a poor configuration can 792 
still expose a fully up-to-date system to attack, so too can a poorly configured image increase 793 
risk even if all the included components are up-to-date. 794 

3.4.3 Embedded malware 795 

Because images are just collections of files packaged together, malicious files could be included 796 
intentionally or inadvertently within them. Organizations often build images from base layers 797 
provided by third parties of which the full provenance is not known. Especially in these cases, an 798 
organization can be exposed to risk by malware being embedded within the image. This malware 799 
would have the same set of capabilities as any other component within the image and thus could 800 
be used to attack other containers or hosts within the environment. 801 

3.4.4 Embedded secrets 802 

Many applications require secrets to enable secure communication between various components. 803 
For example, a web application may need a username and password to connect to a backend 804 
database. When an app is packaged in a container, these secrets can be embedded directly into 805 
the image. However, this practice creates a security risk because anyone with access to the image 806 
file can easily parse it to learn these secrets. Potential sensitive data includes connection strings, 807 
SSH private keys, and x.509 private keys. 808 

3.4.5 Image trust 809 

One of the most common high-risk scenarios in any environment is the execution of untrusted 810 
software. The portability and ease of reuse of containers increase the temptation for teams to run 811 
images from external sources that may not be well validated or trustworthy. For example, when 812 
troubleshooting a problem with a web application, a user may find another version of that 813 
application available in an image provided by a third party. Using this externally provided image 814 
results in the same types of risks that external software traditionally has, such as introducing 815 
malware, leaking data, or including components with vulnerabilities. 816 

3.5 Registry Risks 817 

3.5.1 Insecure connections to registries 818 

Images often contain sensitive components like an organization’s line of business application.  819 
While, ideally, images should not include secrets or user data, the software itself is often 820 
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proprietary to an organization and should be protected in transit. If connections to registries are 821 
performed over insecure channels, the contents of images are subject to the same confidentiality 822 
risks as any other data transmitted in the clear. 823 

3.5.2 Stale images in registries 824 

Because registries are typically the source location for all the images an organization deploys, 825 
over time the set of images they store can include many vulnerable, out-of-date versions. While 826 
these vulnerable images do not directly pose a threat simply by being stored in the registry, they 827 
increase the likelihood of user error resulting in the deployment of a known-bad version. 828 

3.6 Orchestrator Risks 829 

3.6.1 Unbounded administrative access 830 

Historically, many orchestration tools assumed that all users that interacted with them were 831 
administrators and that those administrators should have environment-wide control. However, in 832 
many cases, a single orchestrator may run many different apps, each managed by different teams, 833 
and with different sensitivity levels. If the access provided to users and groups is not scoped to 834 
their specific needs, a malicious or careless user could affect or subvert the operation of other 835 
containers managed by the orchestrator. 836 

3.6.2 Weak or unmanaged credentials 837 

Orchestration tools often include their own authentication directory, which may be separate from 838 
the typical directories already in use within an organization. This can lead to weaker account 839 
management practices and ‘orphaned’ accounts in the orchestrator because these systems are less 840 
rigorously managed. Because many of these accounts are highly privileged within the 841 
orchestrator, compromise of them can lead to systemwide compromise. 842 

3.6.3 Unmanaged inter-container network traffic 843 

In most containerized environments, traffic between individual nodes is routed over a virtual 844 
overlay network. This overlay network is typically managed by the orchestration tool and is 845 
often opaque to existing network security and management tools. For example, instead of seeing 846 
database queries being sent from a web server container to a database container on another host, 847 
traditional network filters would only see encrypted packets flowing between two hosts, with no 848 
visibility into the actual container endpoints, nor the traffic being sent. This can create a security 849 
‘blindness’ scenario in which organizations are unable to effectively monitor traffic within their 850 
own networks.   851 

3.6.4 Mixing of workload sensitivity levels  852 

Orchestrators are typically focused primarily on driving the scale and density of workloads. This 853 
means that, by default, they can place workloads of differing sensitivity levels on the same host.  854 
For example, in a default configuration, an orchestrator may place a container running a public-855 
facing web server on the same host as one processing sensitive financial data, simply because 856 
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that host happens to have the most available resources at the time of deployment. This can put 857 
the container processing sensitive financial data at significantly greater risk of compromise.  858 
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4 Countermeasures for Mitigating the Major Risks 859 

This section discusses possible countermeasures for the major risks identified in Section 3 and 860 
makes recommendations for selecting and using countermeasures. 861 

4.1 Hardware Countermeasures 862 

Software-based security is regularly defeated, as acknowledged in NIST SP 800-164 [20]. NIST 863 
defines trusted computing requirements in NIST SPs 800-147 [21], 800-155 [22], and 800-164. 864 
To NIST, “trusted” means that the platform behaves as it is expected to: the software inventory is 865 
accurate, the configuration settings and security controls are in place and operating as they 866 
should, and so on. “Trusted” also means that it is known that no unauthorized person has 867 
tampered with the software or its configuration on the hosts.  868 

The currently available way to provide trusted computing is to:  869 

1. Measure firmware, software, and configuration data before it is executed using a Root of 870 
Trust for Measurement (RTM). 871 

2. Store those measurements in a hardware root of trust, like a trusted platform module 872 
(TPM). 873 

3. Validate that the current measurements match the expected measurements. If so, it can be 874 
attested that the platform can be trusted to behave as expected. 875 

TPM-enabled devices can check the integrity of the machine during the boot process, enabling 876 
protection and detection mechanisms to function in hardware, at pre-boot, and in the secure boot 877 
process. This same trust and integrity assurance can be extended beyond the OS and the boot 878 
loader to the container runtimes and applications. 879 

The increasing complexity of systems and the deeply embedded nature of today’s threats means 880 
that security should extend across all the layers of the container stack, starting with the hardware 881 
and firmware. This would form a distributed trusted computing model and provide the most 882 
trusted and secure way to build, run, orchestrate, and manage containers.  883 

The trusted computing model should start with measured/secure boot, which provides a verified 884 
system platform, and build a chain of trust rooted in hardware and extended to the bootloaders, 885 
the OS kernel, and the OS components to enable cryptographic verification of boot mechanisms, 886 
system images, container runtimes, and container images. In the container stack, these techniques 887 
are currently applicable at the hardware, hypervisor, and host OS layers, with early work in 888 
progress to apply these to container-specific components. 889 

4.2 Host OS Countermeasures 890 

For customers using container-specific OSes, the threats are typically more minimal to start with 891 
since the OSes are specifically designed to host containers and have other services and 892 
functionality disabled. Further, because these optimized OSes are designed specifically for 893 
hosting containers, they typically feature read-only file systems and employ other hardening 894 
practices by default. Whenever possible, organizations should use these minimalistic OSes to 895 
reduce their attack surfaces and mitigate the typical risks and hardening activities associated with 896 
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general-purpose OSes. This section is thus focused primarily on risks relevant to these container-897 
optimized OSes. 898 

4.2.1 Vulnerabilities in core system components 899 

Organizations should implement management practices and tools to validate the versioning of 900 
components provided for base OS management and functionality. Even though container-901 
specific OSes have a much more minimal set of components than general-purpose OSes, they 902 
still do have vulnerabilities and still require remediation. Organizations should use tools 903 
provided by the OS vendor or other trusted organizations to regularly check for and apply 904 
updates to all software components used within the OS. 905 

Not as obvious, but equally critical to this approach, is ensuring that apps are built, tested, and 906 
operated with clear segmentation between the app and the host OS. Containerized apps should 907 
not rely on host-specific configurations or data storage because those dependencies often make it 908 
more difficult to utilize minimal host OSes. Furthermore, from an operational standpoint, apps 909 
should be built and operated to achieve resiliency through horizontal scaling across multiple 910 
nodes. This is important for host OS remediation because it enables simple updates to all the 911 
hosts in a deployment, removing one of the most common barriers to timely remediation of 912 
security vulnerabilities. 913 

4.2.2 Improper user access rights 914 

Though most container deployments rely on orchestrators to distribute jobs across hosts, 915 
organizations should still ensure that all authentication to the OS is audited, anomalies are 916 
monitored, and any escalation to performed privileged operations is logged. This makes it 917 
possible to identify anomalous access patterns such as an individual logging on to a host directly 918 
and running privileged commands. 919 

Additionally, organizations should ensure that the orchestrator provides only the specific set of 920 
access required to the specific resources required for an administrator to perform their job. For 921 
example, a developer working on project foo should only able to manage resources associated 922 
with project foo and not be able to access resources for project bar. In cases where the 923 
orchestrator does not provide this capability natively, third-party solutions should be 924 
implemented to do so. 925 

4.3 Container Runtime Countermeasures 926 

4.3.1 Vulnerabilities within the runtime software 927 

The container runtime must be carefully monitored for vulnerabilities and when problems are 928 
detected, they must be remediated quickly. A vulnerable runtime exposes all containers it 929 
supports, as well as the host itself, to potentially significant risk. Organizations should use tools 930 
to look for Common Vulnerabilities and Exposures (CVEs) vulnerabilities in the runtimes 931 
deployed, to upgrade any instances at risk, and to ensure that orchestrators only allow 932 
deployments to properly maintained runtimes. 933 
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4.3.2 Unbounded network access from containers 934 

Organizations should control the egress network traffic sent by containers. At minimum, these 935 
controls should be in place at network borders, ensuring containers are not able to send traffic 936 
across networks of differing sensitivity levels, such as from an environment hosting secure data 937 
to the internet, similar to the patterns used for traditional architectures. However, the virtualized 938 
networking model of inter-container traffic poses an additional challenge.   939 

Because containers deployed across multiple hosts typically communicate over a virtual, 940 
encrypted network, traditional network devices are often blind to this traffic. Additionally, 941 
containers are typically assigned dynamic IP addresses automatically when deployed by 942 
orchestrators, and these addresses change continuously as the app is scaled and load balanced.  943 
Thus, ideally, organizations use a combination of existing network level devices and more 944 
application-aware network filtering. App-aware tools should be able to not just see the inter-945 
container traffic, but also to dynamically generate the rules used to filter this traffic based on the 946 
specific characteristics of the apps running in the containers. This dynamic rule management is 947 
critical due to the scale and rate of change of containerized apps, as well as their ephemeral 948 
networking topology.  949 

Specifically, app-aware tools should provide the following capabilities: 950 

• Automated determination of proper container networking surfaces, including both 951 
inbound ports and process-port bindings; 952 

• Detection of traffic flows both between containers and other network entities, over both 953 
‘on the wire’ traffic and encapsulated traffic; and 954 

• Detection of network anomalies, such as unexpected east-west traffic flows, port 955 
scanning, or outbound access to potentially dangerous destinations. 956 

4.3.3 Insecure container runtime configurations 957 

Organizations should automate compliance with container runtime configuration standards. 958 
Documented technical implementation guidance, such as the Center for Internet Security Docker 959 
Benchmark, provides details on options and recommended settings, but operationalizing this 960 
guidance depends on automation. Organizations can use a variety of tools to ‘scan’ and assess 961 
their compliance at a point in time, but such approaches do not scale. Instead, organizations 962 
should use tools or processes that continuously assess configuration settings across the 963 
environment and actively enforce them. 964 

Additionally, mandatory access control technologies like SELinux [23] and AppArmor [24] 965 
provide enhanced control and isolation for containers. For example, these technologies can be 966 
used to provide additional segmentation and assurance that containers should only be able to 967 
access specific file paths, processes, and network sockets, further constraining the ability of even 968 
a compromised container to impact the host or other containers. 969 

4.3.4 Shared kernel 970 

While most container runtime environments do an effective job of isolating containers from each 971 
other and from the host OS, in some cases it may be an unnecessary risk to run apps of different 972 
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classification levels together on the same runtime. Segmenting containers by purpose and 973 
sensitivity provides additional defense in depth. For example, consider a scenario in which a host 974 
is running containers for both a financial database and a public-facing blog. While normally the 975 
container runtime will securely isolate these environments from each other, there is also a shared 976 
responsibility amongst the DevOps teams for each app to operate them properly. If the DevOps 977 
team for the blog were to run their app in a privileged mode and it was compromised, the 978 
attacker may be able to escalate privileges to attack the database.  979 

Thus, a best practice is to group containers together by relative sensitivity and to ensure that a 980 
given host kernel only runs containers of a single sensitivity level. This segmentation may be 981 
provided by using multiple physical servers, but modern hypervisors also provide strong enough 982 
isolation to effectively mitigate these risks. From the previous example, this may mean that the 983 
organization has two sensitivity levels for their containers. One is for financial apps and the 984 
database is included in that group. The other is for web apps and the blog is included in that 985 
group. The organization would then have two pools of VMs that would each host containers of a 986 
single severity level. For example, the host called vm-financial may host the containers running 987 
the financial database as well as the tax reporting software, while a host called vm-web may host 988 
the blog and the public website.  989 

By segmenting containers in this manner, it will be much more difficult for an attacker who 990 
compromises one of the segments to expand that compromise to other segments. This approach 991 
also ensures that any residual data, such as caches or local volumes mounted for temp files, stays 992 
within its security zone. From the previous example, this zoning would ensure that any financial 993 
data cached locally and residually after container termination would never be available on a host 994 
running an app at a lower sensitivity level. 995 

In larger-scale environments with hundreds of hosts and thousands of containers, this 996 
segmentation must be automated to be practical to operationalize. Fortunately, common 997 
orchestration platforms typically include some notion of being able to group apps together, and 998 
container security tools can use attributes like container names and labels to enforce security 999 
policies across them. In these environments, additional layers of defense in depth beyond simple 1000 
host isolation may also leverage this segmentation. For example, an organization may implement 1001 
separate hosting ‘zones’ or networks to not only isolate these containers within hypervisors but 1002 
also to isolate their network traffic more discretely. 1003 

4.3.5 Compromised containers 1004 

Existing host-based intrusion detection processes and tools are often unable to detect and prevent 1005 
attacks within containers due to the differing technical architecture and operational practices 1006 
previously discussed. Organizations should implement additional tools that are container aware 1007 
and designed to operate at the scale and change rate typically seen with containers. These tools 1008 
should be able to automatically profile containerized apps and build protection profiles for them 1009 
to minimize human interaction. These profiles should then be able to detect anomalies at 1010 
runtime, including events such as: 1011 

• Invalid or unexpected process execution, 1012 
• Invalid or unexpected system calls, 1013 
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• Changes to protected configuration files and binaries, 1014 
• Writes to unexpected locations and file types, 1015 
• Creation of unexpected network listeners, 1016 
• Traffic sent to unexpected network destinations, and 1017 
• Malware storage or execution. 1018 

4.4 Image Countermeasures 1019 

4.4.1 Image vulnerabilities 1020 

There is a need for container-specific vulnerability management tools and processes. Traditional 1021 
vulnerability management tools make many assumptions about host durability, app update 1022 
mechanisms, and update frequencies that are fundamentally misaligned with a containerized 1023 
model. These tools are often unable to detect vulnerabilities within containerized stacks, leading 1024 
to a false sense of safety. Organizations should use tools that take the pipeline-based build 1025 
approach and immutable nature of containers and images into their design to provide more 1026 
actionable and reliable results. Key aspects of effective tools and processes include: 1027 

1. Integration with the entire lifecycle of images and containers, from the beginning of the 1028 
build process, to whatever registries the organization is using, to runtime. 1029 

2. Visibility into vulnerabilities at all layers of the image, not just the base layer of the 1030 
image but also application frameworks and custom software the organization is using. 1031 

3. Policy driven enforcement; organizations should be able to create ‘quality gates’ at each 1032 
stage of the build and deployment process to ensure that only images that meet the 1033 
vulnerable policy are allowed to progress. For example, organizations should be able to 1034 
configure a rule in the build process to prevent the progression of images that include 1035 
vulnerabilities with Common Vulnerability Scoring System (CVSS) ratings above a 1036 
selected threshold. 1037 

4.4.2 Image configuration 1038 

In addition to software vulnerabilities, images may be configured in ways that increase security 1039 
risks and violate organizational policies. For example, images should be configured to run as 1040 
non-privileged users and should not allow remote access to themselves. Organizations should 1041 
adopt tools and processes to validate and enforce compliance with these secure configuration 1042 
best practices. Such tools and processes should include: 1043 

1. Validation of image configuration settings including both vendor recommendations and 1044 
custom / 3rd party best practices. 1045 

2. Centralized reporting and monitoring of image compliance state to identify weaknesses 1046 
and risks at the organizational level. 1047 

3. Enforcement of compliance requirements by preventing the running of non-compliant 1048 
images. 1049 

4.4.3 Malware 1050 

Organizations should use tools and practices to monitor images for malware both at rest and 1051 
when running in containers. These processes should include: 1052 
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1. Identification of malware within images both in registries and on hosts, 1053 
2. The usage of comprehensive malware signature sets and detection heuristics based on 1054 

actual ‘in the wild’ attacks, 1055 
3. The detection of malware introduced to a container at runtime; for example, if a container 1056 

is subverted and the attacker downloads a rootkit into it. 1057 

4.4.4 Embedded secrets 1058 

Sensitive data should never be stored within image files. Instead, these secrets should be stored 1059 
outside of the images and provided dynamically at runtime as needed. Most orchestration 1060 
platforms, such as Docker Swarm and Kubernetes, include secret management natively. These 1061 
platforms not only provide secure secret storage and ‘just in time’ injection to containers, but 1062 
also make it much simpler to integrate secret management into the build and deployment 1063 
processes. For example, an organization could use these tools to securely provision the database 1064 
connection string into a web app container. The platform would ensure that only the web app 1065 
container had access to this secret, that it is not persisted to disk, and that anytime the web app is 1066 
deployed, the secret is provisioned into it.   1067 

Organizations may also integrate their container deployments with existing enterprise secret 1068 
management systems that are already in use for storing secrets in non-container environments.  1069 
These tools typically provide APIs to retrieve secrets securely as containers are deployed, which 1070 
eliminates the need to persist them within images. 1071 

4.4.5 Image trust 1072 

Organizations should enforce a set of trusted images and registries and ensure that only images 1073 
from this set are allowed to run in their environment, thus mitigating the risk of untrusted or 1074 
malicious components being deployed. 1075 

To mitigate these risks, organizations should take a multilayered approach to ensure that only 1076 
trusted, valid images are run within their environment. Such an approach should include: 1077 

• Capability to centrally control exactly what images and registries are trusted in their 1078 
environment; 1079 

• Discrete identification of each image by cryptographic signature, using a NIST-validated 1080 
implementation2; 1081 

• Quality gates to ensure that only images that have been validated from a compliance and 1082 
vulnerability state are allowed to be pushed to these locations; 1083 

• Enforcement to ensure that all hosts in the environment only run images from these 1084 
approved lists; and 1085 

• Ongoing monitoring and maintenance of these repositories to ensure images within them 1086 
are maintained and updated as vulnerabilities and configuration requirements change. 1087 

                                                 

2  For more information on NIST-validated cryptographic implementations, see the Cryptographic Module Validation Program 
(CMVP) page at http://csrc.nist.gov/groups/STM/cmvp/.  

http://csrc.nist.gov/groups/STM/cmvp/
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4.5 Registry Countermeasures 1088 

4.5.1 Insecure connections to registries 1089 

Organizations should configure their container runtimes to only connect to registries over 1090 
encrypted channels. The specific steps vary between runtime and orchestrator, but the key goal is 1091 
to ensure that all data pulled from a registry is encrypted in transit between the registry and the 1092 
destination. 1093 

4.5.2 Stale images in registries 1094 

The risk of using stale images can be mitigated through two primary methods. First, 1095 
organizations can prune registries of unsafe, vulnerable images that should no longer be used.  1096 
This process can be automated based on time triggers and labels associated with images.  1097 
Second, operational practices should emphasize accessing images using immutable names that 1098 
specify discrete versions of images to be used. For example, rather than configuring a 1099 
deployment job to use the image called my-app, configure it to deploy specific versions of the 1100 
image, such as my-app:2.3 and my-app:2.4 to ensure that specific, known good instances of 1101 
images are deployed as part of each job. 1102 

4.6 Orchestrator Countermeasures 1103 

4.6.1 Unbounded administrative access 1104 

Especially because of their wide-ranging span of control, orchestrators should use a least 1105 
privileged access model in which users are only granted ability to perform the specific actions on 1106 
the specific hosts, containers, and images their job role requires. For examples, members of the 1107 
test team should only be given access to the images used in testing and the hosts used for running 1108 
them, and should only be able to manipulate the containers they created. Test team members 1109 
should have limited or no access to containers used in production. 1110 

4.6.2 Weak or unmanaged credentials 1111 

Access to cluster-wide administrative accounts should be tightly controlled as these accounts 1112 
provide ability to affect all resources in the environment. Organizations should also implement 1113 
single sign on to existing directory systems where applicable. Single sign on simplifies the 1114 
orchestrator authentication experience, makes it easier for users to use strong authentication 1115 
credentials, and centralizes auditing of access, making anomaly detection more effective. 1116 

4.6.3 Mixing of workload sensitivity levels  1117 

Orchestrators should be configured to isolate deployments to specific sets of hosts by sensitivity 1118 
levels. The particular approach for implementing this varies depending on the orchestrator in use, 1119 
but the general model is to define rules that prevent high sensitivity workloads from being placed 1120 
on the same host as those running lower sensitivity workloads. This can be accomplished 1121 
through the use of host ‘pinning’ within the orchestrator or even simply by having separate, 1122 
individually managed clusters for each classification level. 1123 

 1124 
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5 Container Threat Scenario Examples 1125 

To illustrate the effectiveness of the recommended mitigations from Section 4, consider the 1126 
following threat scenario examples for containers. 1127 

5.1 Exploit of a Vulnerability within an Image 1128 

One of the most common threats to a containerized environment is application-level 1129 
vulnerabilities in the software within containers. For example, an organization may build an 1130 
image based on a common web application. If that application has a vulnerability, it may be used 1131 
to subvert the application within the container. Once compromised, the attacker may be able to 1132 
map other systems in the environment, attempt to elevate privileges within the compromised 1133 
container, or abuse the container for use in attacks on other systems (such as acting as a file 1134 
dropper or command and control endpoint). 1135 

Organizations that adopt the recommendations would have multiple layers of defense in depth 1136 
against such threats: 1137 

1. Detecting the vulnerable image early in the deployment process and having controls in 1138 
place to prevent vulnerable images from being deployed would prevent the vulnerability 1139 
from being introduced into production. 1140 

2. Container-aware network monitoring and filtering would detect anomalous connections 1141 
to other containers during the attempt to map other systems. 1142 

3. Container-aware process monitoring and malware detection would detect the running of 1143 
invalid or unexpected malicious processes and the data they introduce into the 1144 
environment.  1145 

5.2 Exploit of the Container Runtime 1146 

While a rare occurrence, if a container runtime were compromised, an attacker could utilize this 1147 
access to attack all the containers on the host and even the host itself. 1148 

Relevant mitigations for this threat scenario include: 1149 

1. The usage of mandatory access control capabilities can provide additional barriers to 1150 
ensure that process and file system activity is still segmented within the defined 1151 
boundaries. 1152 

2. Segmentation of workloads ensures that the scope of the compromise would be limited to 1153 
applications of a common classification level that are sharing the host. For example, a 1154 
compromised runtime on a host only running web applications would not impact 1155 
runtimes on other hosts running containers for financial applications. 1156 

3. Security tools that can report on the vulnerability state of runtimes and prevent the 1157 
deployment of images to vulnerable ones can prevent workloads from running there. 1158 

5.3 Running a Poisoned Image 1159 

Because images are easily sourced from public locations, often with unknown provenance, an 1160 
attacker may embed malicious software within images known to be used by a target. For 1161 
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example, if an attacker determines that a target is active on a discussion board about a particular 1162 
project and uses images provided by that project’s web site, the attacker may seek to craft 1163 
malicious versions of these images for use in an attack. 1164 

Relevant mitigations include: 1165 

1. Ensuring that only trusted images are allowed to run will prevent images from external, 1166 
unvetted sources from being used. 1167 

2. Automated scanning of images for vulnerabilities and malware may detect malicious 1168 
code such as rootkits embedded within an image. 1169 

 1170 

 1171 
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6 Secure Container Technology Stack Planning and Implementation  1172 

It is critically important to carefully plan before installing, configuring, and deploying container 1173 
technology stacks. This helps ensure that the container environment is as secure as possible and 1174 
is in compliance with all relevant organizational policies, external regulations, and other 1175 
requirements. 1176 

There is a great deal of similarity in the planning and implementation recommendations for 1177 
container technology stacks and virtualization solutions. Section 5 of NIST SP 800-125 [1] 1178 
already contains a full set of recommendations for virtualization solutions. Instead of repeating 1179 
all those recommendations here, this section points readers to that document and states that, 1180 
besides the exceptions listed below, organizations should apply all the NIST SP 800-125 Section 1181 
5 recommendations in a container technology stack context. For example, instead of creating a 1182 
virtualization security policy, create a container technology stack security policy. 1183 

This section of the document lists exceptions and additions to the NIST SP 800-125 Section 5 1184 
recommendations, grouped by the corresponding phase in the planning and implementation life 1185 
cycle. 1186 

6.1 Initiation Phase 1187 

Organizations should consider how other security policies may be affected by containers and 1188 
adjust these policies as needed to take containers into consideration. For example, policies for 1189 
incident response (especially forensics) and vulnerability management may need to be adjusted 1190 
to take into account the special requirements of containers. 1191 

The introduction of containerization technologies might disrupt the existing culture and software 1192 
development methodologies within the organization. To take full advantage of the benefits 1193 
containers can provide, the organization’s processes should be tailored to support this new way 1194 
of developing, running, and supporting applications. Traditional development practices, patching 1195 
techniques, and system upgrade processes might not directly apply to a containerized 1196 
environment, and it is important that the employees within the organization are willing to adapt 1197 
to a new model. New processes can consider and address any potential culture shock that is 1198 
introduced by the technology shift. Education and training can be offered to anyone involved in 1199 
the software development lifecycle to allow people to become comfortable and excited for the 1200 
new way to build, ship, and run applications. 1201 

6.2 Planning and Design Phase 1202 

The primary container-specific consideration for the planning and design phase is forensics. 1203 
Because containers mostly build on components already present in OSes, the tools and 1204 
techniques for performing forensics in a containerized environment are mostly an evolution of 1205 
existing practices. The immutable nature of containers and images can actually improve forensic 1206 
capabilities because the demarcation between what an image should do and what actually 1207 
occurred during an incident is clearer. For example, if a container launched to run a web server 1208 
suddenly starts a mail relay, it is very clear that the new process was not part of the original 1209 
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image used to create the container. On traditional platforms, with less separation between the OS 1210 
and apps, making this differentiation can be much more difficult. 1211 

Organizations that are familiar with process, memory, and disk incident response activities will 1212 
find them largely similar when working with containers. However, there are some differences to 1213 
keep in mind as well. 1214 

Containers typically use a layered file system that is virtualized from the host OS. Directly 1215 
examining paths on the hosts typically only reveals the outer boundary of these layers, not the 1216 
files and data within them. Thus, when responding to incidents in containerized environments, 1217 
users should identify the specific storage provider in use and understand how to properly 1218 
examine its contents offline. 1219 

Containers are typically connected to each other using virtualized overlay networks. These 1220 
overlay networks frequently use encapsulation and encryption to allow the traffic to be routed 1221 
over existing networks securely. However, this means that when investigating incidents on 1222 
container networks, particularly when doing any live packet analysis, the tools used must be 1223 
aware of these virtualized networks and understand how to extract the embedded IP frames from 1224 
within them for parsing with existing tools. 1225 

Process and memory activity within containers is largely similar to that which would be observed 1226 
within traditional apps, but with different parent processes. For example, container runtimes may 1227 
spawn all processes within containers in a nested fashion in which the runtime is the top-level 1228 
process with first-level descendants per container and second-level descendants for each process 1229 
within the container.  For example: 1230 

├─containerd─┬───┬───[container1─┬─bash] 1231 
│            │   │               └─8*[{thread}]] 1232 
│            │   ├─container2────┬─start.sh─┬─mongod───22*[{mongod}] 1233 
│            │   │               │          └─node─┬─4*[{V8 WorkerThread}] 1234 
│            │   │               │                 └─5*[{node}] 1235 
│            │   │               └─8*[{thread}] 1236 
│            │   ├─container3────┬─mysqld───28*[{mysqld}] 1237 
│            │   │               └─8*[{thread}] 1238 

6.3 Implementation Phase 1239 

After the container technology stack has been designed, the next step is to implement and test a 1240 
prototype of the design before putting the solution into production. Be aware that container 1241 
technology stacks do not offer the types of introspection capabilities that VM technologies do. 1242 

In addition to the NIST SP 800-125 items, it is important to also evaluate the container 1243 
technology stack’s isolation capabilities. Ensure that processes within the container can access 1244 
all resources they are permitted to and cannot view or access any other resources. 1245 

Implementation may also require altering the configuration of other security controls and 1246 
technologies, such as security event logging, network management, code repositories, and 1247 
authentication servers. 1248 



NIST SP 800-190 (DRAFT)  APPLICATION CONTAINER SECURITY GUIDE 
    

31 

When the prototype evaluation has been completed and the container technology stack is ready 1249 
for production usage, the stack should initially be used for a small number of applications. 1250 
Problems that occur are likely to affect multiple applications, so it is helpful to identify these 1251 
problems early on so they can be addressed before further deployment. A phased deployment 1252 
also provides time for developers and IT staff (e.g., system administrators, help desk) to be 1253 
trained on its usage and support. 1254 

6.4 Operations and Maintenance Phase 1255 

Operational processes that are particularly important for maintaining the security of container 1256 
technology stacks, and thus should be performed regularly, include updating all images and 1257 
distributing those updated images to containers to take the place of older images. 1258 

6.5 Disposition Phase 1259 

The ability for containers to be deployed and destroyed automatically based on the needs of an 1260 
application allows for highly efficient systems but can also introduce some challenges for 1261 
records retention, forensic, and event data requirements. Organizations should make sure that 1262 
appropriate mechanisms are in place to satisfy their data retention policies. Example of issues 1263 
that should be addressed are how containers and images should be destroyed, what data should 1264 
be extracted from a container before disposal and how that data extraction should be performed, 1265 
how cryptographic keys used by a container should be revoked or deleted, etc.  1266 

Data stores and media that support the containerized environment should be included in any 1267 
disposal plans developed by the organization. 1268 

  1269 
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7 Conclusion 1270 

While containers represent a transformational change in the way apps are built and run, they do 1271 
not fundamentally upend decades of information security best practices. On the contrary, the 1272 
most important aspects of container security are simply refinements of well-established 1273 
techniques and principles. Containers provide new constructs for hosting apps, but they run on 1274 
the same basic stack as the VMs most organizations are already using. Securing containers is as 1275 
much a function of securing the underlying stack as it is using any container-specific techniques. 1276 

Earlier, this document discussed some of the differences between securing containers and 1277 
securing the same apps in VMs. It is useful to summarize the guidance in this document around 1278 
those points. 1279 

There are many more entities, so your security processes and tools must be able to scale 1280 
accordingly. Scale does not just mean the total number of objects supported in a database, but 1281 
also how effectively and autonomously policy can be managed. Many organizations struggle 1282 
with the burden of managing security across hundreds of VMs. As container-centric architectures 1283 
become the norm and these organizations are responsible for thousands or tens of thousands of 1284 
instances, their security practices should emphasize automation and efficiency to keep up. 1285 

With containers there is a much higher rate of change, moving from updating an app a few times 1286 
a year to a few times a week or even a day. What used to be acceptable to do manually no longer 1287 
is. Automation is not just important to deal with the net number of entities, but also how 1288 
frequently those entities change.  Being able to centrally express policy and have software 1289 
manage enforcement of it across the environment is vital. Organizations that adopt containers 1290 
should be prepared to manage this frequency of change, which may require fundamentally new 1291 
operational practices and organizational evolution. 1292 

Security is largely in the hands of the developer, so organizations should ensure that those 1293 
developers have all the security data they need to make good decisions. That data should be 1294 
integrated with the tooling they already use and should allow security teams to not just notify but 1295 
also actively enforce quality throughout the development cycle. Organizations that are successful 1296 
at this transition gain security benefit in being able to respond to vulnerabilities faster and with 1297 
less operational burden than ever before. 1298 

Security must be as portable as the containers themselves, so organizations should adopt 1299 
techniques and tools that are open and work across platforms and environments. Many 1300 
organizations will see developers build in one environment, test in another, and deploy in a third, 1301 
so having consistency in assessment and enforcement across these is key. Portability is also not 1302 
just environmental but also temporal. Continuous integration and deployment practices erode the 1303 
traditional walls between phases of the development and deployment cycle, so organizations 1304 
need to ensure consistent, automated security practices across creation of the image, storage of 1305 
the image in registries, and running of the images in containers. 1306 

Organizations that navigate these changes do not just reach a basic stasis of their existing 1307 
security policies with containers, but instead can begin to leverage containers to actually improve 1308 
their overall security. The immutability and declarative nature of containers enables 1309 
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organizations to begin realizing the vision of more automated, app-centric security that requires 1310 
minimal manual involvement and that updates itself as the apps change. Containers are an 1311 
enabling capability in organizations moving from reactive, manual, high-cost security models to 1312 
those that enable better scale and efficiency, thus lowering risk. 1313 
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Appendix A—NIST Resources for Security Outside the Container Stack 1314 

This appendix lists NIST resources for securing systems and system components outside the 1315 
container stack. Many more resources are available from other organizations. 1316 

Table 1: NIST Resources for Security Outside the Container Stack 1317 

Resource Name and URI Applicability 
SP 800-40 Revision 3, Guide to Enterprise Patch Management Technologies  
https://doi.org/10.6028/NIST.SP.800-40r3  

All IT products and systems 

SP 800-46 Revision 2, Guide to Enterprise Telework, Remote Access, and Bring 
Your Own Device (BYOD) Security 
https://doi.org/10.6028/NIST.SP.800-46r2  

Client operating systems, 
client applications 

SP 800-53 Revision 4, Security and Privacy Controls for Federal Information 
Systems and Organizations 
https://doi.org/10.6028/NIST.SP.800-53r4  

All IT products and systems 

SP 800-70 Revision 3, National Checklist Program for IT Products: Guidelines for 
Checklist Users and Developers 
http://dx.doi.org/10.6028/NIST.SP.800-70r3  

Server operating systems, 
client operating systems, 
server applications, client 
applications 

SP 800-83 Revision 1, Guide to Malware Incident Prevention and Handling for 
Desktops and Laptops 
https://doi.org/10.6028/NIST.SP.800-83r1  

Client operating systems, 
client applications 

SP 800-123, Guide to General Server Security  
https://doi.org/10.6028/NIST.SP.800-123  

Servers 

SP 800-124 Revision 1, Guidelines for Managing the Security of Mobile Devices in 
the Enterprise 
https://doi.org/10.6028/NIST.SP.800-124r1  

Mobile devices 

SP 800-125, Guide to Security for Full Virtualization Technologies 
https://doi.org/10.6028/NIST.SP.800-125  

Hypervisors and virtual 
machines 

SP 800-125A, Security Recommendations for Hypervisor Deployment 
http://csrc.nist.gov/publications/drafts/800-125a/sp800-125a_draft.pdf  

Hypervisors and virtual 
machines 

SP 800-125B, Secure Virtual Network Configuration for Virtual Machine (VM) 
Protection  
https://doi.org/10.6028/NIST.SP.800-125B  

Hypervisors and virtual 
machines 

SP 800-147, BIOS Protection Guidelines 
https://doi.org/10.6028/NIST.SP.800-147  

Client hardware 

SP 800-155, BIOS Integrity Measurement Guidelines 
http://csrc.nist.gov/publications/drafts/800-155/draft-SP800-155_Dec2011.pdf  

Client hardware 

SP 800-164, Guidelines on Hardware-Rooted Security in Mobile Devices 
http://csrc.nist.gov/publications/drafts/800-164/sp800_164_draft.pdf  

Mobile devices 

 1318 

 1319 

  1320 

https://doi.org/10.6028/NIST.SP.800-40r3
https://doi.org/10.6028/NIST.SP.800-46r2
https://doi.org/10.6028/NIST.SP.800-53r4
http://dx.doi.org/10.6028/NIST.SP.800-70r3
https://doi.org/10.6028/NIST.SP.800-83r1
https://doi.org/10.6028/NIST.SP.800-123
https://doi.org/10.6028/NIST.SP.800-124r1
https://doi.org/10.6028/NIST.SP.800-125
http://csrc.nist.gov/publications/drafts/800-125a/sp800-125a_draft.pdf
https://doi.org/10.6028/NIST.SP.800-125B
https://doi.org/10.6028/NIST.SP.800-147
http://csrc.nist.gov/publications/drafts/800-155/draft-SP800-155_Dec2011.pdf
http://csrc.nist.gov/publications/drafts/800-164/sp800_164_draft.pdf
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Appendix B—NIST Cybersecurity Framework and NIST SP 800-53 Security Controls 1321 
Related to Container Stack Security 1322 

The security controls from NIST SP 800-53 Revision 4 [25] that are most important for container 1323 
stack security are listed in Table 2. 1324 

Table 2: Security Controls from NIST SP 800-53 for Container Stack Security 1325 

NIST SP 800-53 Control Related Controls References 
AC-2, Account 
Management 

AC-3, AC-4, AC-5, AC-6, AC-10, AC-17, AC-19, AC-20, 
AU-9, IA-2, IA-4, IA-5, IA-8, CM-5, CM-6, CM-11, MA-3, 
MA-4, MA-5, PL-4, SC-13 

 

AC-3, Access Enforcement AC-2, AC-4, AC-5, AC-6, AC-16, AC-17, AC-18, AC-19, 
AC-20, AC-21, AC- 22, AU-9, CM-5, CM-6, CM-11, MA-3, 
MA-4, MA-5, PE-3 

 

AC-4, Information Flow 
Enforcement 

AC-3, AC-17, AC-19, AC-21, CM-6, CM-7, SA-8, SC-2, 
SC-5, SC-7, SC-18 

 

AC-6, Least Privilege AC-2, AC-3, AC-5, CM-6, CM-7, PL-2  
AC-17, Remote Access AC-2, AC-3, AC-18, AC-19, AC-20, CA-3, CA-7, CM-8, 

IA-2, IA-3, IA-8, MA-4, PE-17, PL-4, SC-10, SI-4 
NIST SPs 800-46, 800-77, 
800-113, 800-114, 800-
121 

AT-3, Role-Based Security 
Training 

AT-2, AT-4, PL-4, PS-7, SA-3, SA-12, SA-16 C.F.R. Part 5 Subpart C 
(5C.F.R.930.301); NIST 
SPs 800-16, 800- 50 

AU-2, Audit Events AC-6, AC-17, AU-3, AU-12, MA-4, MP-2, MP-4, SI-4 NIST SP 800-92; 
https://idmanagement.gov/  

AU-5, Response to Audit 
Processing Failures 

AU-4, SI-12  

AU-6, Audit Review, 
Analysis, and Reporting 

AC-2, AC-3, AC-6, AC-17, AT-3, AU-7, AU-16, CA-7, CM-
5, CM-10, CM-11, IA-3, IA-5, IR-5, IR-6, MA-4, MP-4, PE-
3, PE-6, PE-14, PE-16, RA-5, SC-7, SC-18, SC-19, SI-3, 
SI-4, SI-7 

 

AU-8, Time Stamps AU-3, AU-12  
AU-9, Protection of Audit 
Information 

AC-3, AC-6, MP-2, MP-4, PE-2, PE-3, PE-6  

AU-12, Audit Generation AC-3, AU-2, AU-3, AU-6, AU-7  
CA-9, Internal System 
Connections 

AC-3, AC-4, AC-18, AC-19, AU-2, AU-12, CA- 7, CM-2, 
IA-3, SC-7, SI-4 

 

CM-2, Baseline 
Configuration 

CM-3, CM-6, CM-8, CM-9, SA-10, PM-5, PM-7 NIST SP 800-128 

CM-3, Configuration 
Change Control 

CA-7, CM-2, CM-4, CM-5, CM-6, CM-9, SA-10, SI- 2, SI-
12 

NIST SP 800-128 

CM-4, Security Impact 
Analysis 

CA-2, CA-7, CM-3, CM-9, SA-4, SA-5, SA-10, SI-2 NIST SP 800-128 

CM-5, Access Restrictions 
for Change 

AC-3, AC-6, PE-3  

CM-6, Configuration 
Settings 

AC-19, CM-2, CM-3, CM-7, SI-4 OMB Memoranda 07-11, 
07-18, 08-22; NIST SPs 
800-70, 800-128; 
https://nvd.nist.gov; 
https://checklists.nist.gov; 
https://www.nsa.gov  

https://idmanagement.gov/
https://nvd.nist.gov/
https://checklists.nist.gov/
https://www.nsa.gov/
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NIST SP 800-53 Control Related Controls References 
CM-7, Least Functionality AC-6, CM-2, RA-5, SA-5, SC-7 DoD Instruction 8551.01 
CM-9, Configuration 
Management Plan 

CM-2, CM-3, CM-4, CM-5, CM-8, SA-10 NIST SP 800-128 

CP-2, Contingency Plan AC-14, CP-6, CP-7, CP-8, CP-9, CP-10, IR-4, IR-8, MP-
2, MP-4, MP-5, PM-8, PM-11 

Federal Continuity 
Directive 1; NIST SP 800-
34 

CP-9, Information System 
Backup 

CP-2, CP- 6, MP-4, MP-5, SC-13 NIST SP 800-34 

CP-10, Information System 
Recovery and 
Reconstitution 

CA-2, CA-6, CA-7, CP-2, CP-6, CP-7, CP-9, SC-24 Federal Continuity 
Directive 1; NIST SP 800-
34 

IA-2, Identification and 
Authentication 
(Organizational Users) 

AC-2, AC-3, AC-14, AC-17, AC-18, IA-4, IA-5, IA-8 HSPD-12; OMB 
Memoranda 04-04, 06-16, 
11-11; FIPS 201; NIST 
SPs 800-63, 800-73, 800-
76, 800-78; FICAM 
Roadmap and 
Implementation Guidance; 
https://idmanagement.gov/  

IA-4, Identifier 
Management 

AC-2, IA-2, IA-3, IA-5, IA-8, SC-37 FIPS 201; NIST SPs 800-
73, 800-76, 800-78 

IA-5, Authenticator 
Management 

AC-2, AC-3, AC-6, CM-6, IA-2, IA-4, IA-8, PL-4, PS-5, 
PS-6, SC-12, SC-13, SC-17, SC-28 

OMB Memoranda 04-04, 
11-11; FIPS 201; NIST 
SPs 800-63, 800-73, 800-
76, 800-78; FICAM 
Roadmap and 
Implementation Guidance; 
https://idmanagement.gov/ 

IR-1, Incident Response 
Policy and Procedures 

PM-9 NIST SPs 800-12, 800-61, 
800-83, 800-100 

IR-4, Incident Handling AU-6, CM-6, CP-2, CP-4, IR-2, IR-3, IR-8, PE-6, SC-5, 
SC-7, SI-3, SI-4, SI-7 

EO 13587; NIST SP 800-
61 

MA-2, Controlled 
Maintenance 

CM-3, CM-4, MA-4, MP-6, PE-16, SA-12, SI-2  

MA-4, Nonlocal 
Maintenance 

AC- 2, AC-3, AC-6, AC-17, AU-2, AU-3, IA-2, IA-4, IA-5, 
IA-8, MA-2, MA-5, MP-6, PL-2, SC-7, SC-10, SC-17 

FIPS 140-2, 197, 201; 
NIST SPs 800-63, 800-88; 
CNSS Policy 15 

PL-2, System Security 
Plan 

AC-2, AC-6, AC-14, AC-17, AC-20, CA-2, CA-3, CA-7, 
CM-9, CP-2, IR-8, MA-4, MA-5, MP-2, MP-4, MP-5, PL-7, 
PM-1, PM-7, PM-8, PM-9, PM-11, SA-5, SA-17 

NIST SP 800-18 

PL-4, Rules of Behavior AC-2, AC-6, AC-8, AC-9, AC-17, AC-18, AC-19, AC-20, 
AT-2, AT-3, CM-11, IA-2, IA-4, IA-5, MP-7, PS-6, PS-8, 
SA-5 

NIST SP 800-18 

RA-2, Security 
Categorization 

CM-8, MP-4, RA-3, SC-7 FIPS 199; NIST SPs 800-
30, 800-39, 800-60 

RA-3, Risk Assessment RA-2, PM-9 OMB Memorandum 04-
04; NIST SPs 800-30, 
800-39; 
https://idmanagement.gov/  

SA-10, Developer 
Configuration 
Management 

CM-3, CM-4, CM-9, SA-12, SI-2 NIST SP 800-128 

https://idmanagement.gov/
https://idmanagement.gov/
https://idmanagement.gov/
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NIST SP 800-53 Control Related Controls References 
SA-11, Developer Security 
Testing and Evaluation 

CA-2, CM-4, SA-3, SA-4, SA-5, SI-2 ISO/IEC 15408; NIST SP 
800-53A; 
https://nvd.nist.gov; 
http://cwe.mitre.org; 
http://cve.mitre.org; 
http://capec.mitre.org  

SA-15, Development 
Process, Standards, and 
Tools 

SA-3, SA-8  

SA-19, Component 
Authenticity 

PE-3, SA-12, SI-7  

SC-2, Application 
Partitioning 

SA-4, SA-8, SC-3  

SC-4, Information in 
Shared Resources 

AC-3, AC-4, MP-6  

SC-6, Resource 
Availability 

  

SC-8, Transmission 
Confidentiality and 
Integrity 

AC-17, PE-4 FIPS 140-2, 197; NIST 
SPs 800-52, 800-77, 800-
81, 800-113; CNSS Policy 
15; NSTISSI No. 7003 

SI-2, Flaw Remediation CA-2, CA-7, CM-3, CM-5, CM-8, MA-2, IR-4, RA-5, SA-
10, SA-11, SI-11 

NIST SPs 800-40, 800-
128 

SI-4, Information System 
Monitoring 

AC-3, AC-4, AC-8, AC-17, AU-2, AU-6, AU-7, AU-9, AU-
12, CA-7, IR-4, PE-3, RA-5, SC-7, SC-26, SC-35, SI-3, 
SI-7 

NIST SPs 800-61, 800-83, 
800-92, 800-137 

SI-7, Software, Firmware, 
and Information Integrity 

SA-12, SC-8, SC-13, SI-3 NIST SPs 800-147, 800-
155 

 1326 

The list below details the NIST Cybersecurity Framework [26] subcategories that are most 1327 
important for container stack security.  1328 

• Identify: Asset Management 1329 
o ID.AM-3: Organizational communication and data flows are mapped 1330 
o ID.AM-5: Resources (e.g., hardware, devices, data, and software) are prioritized 1331 

based on their classification, criticality, and business value 1332 
• Identify: Risk Assessment 1333 

o ID.RA-1: Asset vulnerabilities are identified and documented 1334 
o ID.RA-3: Threats, both internal and external, are identified and documented 1335 
o ID.RA-4: Potential business impacts and likelihoods are identified 1336 
o ID.RA-5: Threats, vulnerabilities, likelihoods, and impacts are used to determine risk 1337 
o ID.RA-6: Risk responses are identified and prioritized 1338 

• Protect: Access Control 1339 
o PR.AC-1: Identities and credentials are managed for authorized devices and users 1340 
o PR.AC-2: Physical access to assets is managed and protected 1341 
o PR.AC-3: Remote access is managed 1342 

https://nvd.nist.gov/
http://cwe.mitre.org/
http://cve.mitre.org/
http://capec.mitre.org/
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o PR.AC-4: Access permissions are managed, incorporating the principles of least 1343 
privilege and separation of duties 1344 

• Protect: Awareness and Training 1345 
o PR.AT-2: Privileged users understand roles & responsibilities 1346 
o PR.AT-5: Physical and information security personnel understand roles & 1347 

responsibilities 1348 
• Protect: Data Security 1349 

o PR.DS-2: Data-in-transit is protected 1350 
o PR.DS-4: Adequate capacity to ensure availability is maintained 1351 
o PR.DS-5: Protections against data leaks are implemented 1352 
o PR.DS-6: Integrity checking mechanisms are used to verify software, firmware, and 1353 

information integrity 1354 
• Protect: Information Protection Processes and Procedures 1355 

o PR.IP-1: A baseline configuration of information technology/industrial control 1356 
systems is created and maintained 1357 

o PR.IP-3: Configuration change control processes are in place 1358 
o PR.IP-6: Data is destroyed according to policy 1359 
o PR.IP-9: Response plans (Incident Response and Business Continuity) and recovery 1360 

plans (Incident Recovery and Disaster Recovery) are in place and managed 1361 
o PR.IP-12: A vulnerability management plan is developed and implemented 1362 

• Protect: Maintenance 1363 
o PR.MA-1: Maintenance and repair of organizational assets is performed and logged 1364 

in a timely manner, with approved and controlled tools 1365 
o PR.MA-2: Remote maintenance of organizational assets is approved, logged, and 1366 

performed in a manner that prevents unauthorized access 1367 
• Protect: Protective Technology 1368 

o PR.PT-1: Audit/log records are determined, documented, implemented, and reviewed 1369 
in accordance with policy 1370 

o PR.PT-3: Access to systems and assets is controlled, incorporating the principle of 1371 
least functionality 1372 

• Detect: Anomalies and Events 1373 
o DE.AE-2: Detected events are analyzed to understand attack targets and methods 1374 

• Detect: Security Continuous Monitoring 1375 
o DE.CM-1: The network is monitored to detect potential cybersecurity events 1376 
o DE.CM-7: Monitoring for unauthorized personnel, connections, devices, and software 1377 

is performed 1378 
• Respond: Response Planning 1379 

o RS.RP-1: Response plan is executed during or after an event 1380 
• Respond: Analysis 1381 

o RS.AN-1: Notifications from detection systems are investigated 1382 
o RS.AN-3: Forensics are performed 1383 

• Respond: Mitigation 1384 
o RS.MI-1: Incidents are contained 1385 
o RS.MI-2: Incidents are mitigated 1386 
o RS.MI-3: Newly identified vulnerabilities are mitigated or documented as accepted 1387 

risks 1388 
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• Recover: Recovery Planning 1389 
o RC.RP-1: Recovery plan is executed during or after an event 1390 

 1391 

Table 3 lists the security controls from NIST SP 800-53 Revision 4 [25] that can be 1392 
accomplished partially or completely by using container stack technology. The rightmost column 1393 
lists the sections of this document that map to each NIST SP 800-53 control. 1394 

Table 3: NIST SP 800-53 Controls Supported by Container Stacks 1395 

NIST SP 800-53 
Control 

Container Stack Relevancy Related Sections of 
This Document 

CM-3, Configuration 
Change Control 

Images can be used to help manage change control for 
applications. 

2.3, 2.4, 2.5, 3.1, 4.4 

SC-2, Application 
Partitioning 

Separating user functionality from administrator functionality can 
be accomplished in part by using containers or other virtualization 
technologies so that the functionality is performed in different 
containers. 

2 (introduction), 2.1, 
4.3.4 

SC-3, Security 
Function Isolation 

Separating security functions from non-security functions can be 
accomplished in part by using containers or other virtualization 
technologies so that the functions are performed in different 
containers. 

2 (introduction), 2.1, 
4.3.4 

SC-4, Information in 
Shared Resources 

Container stacks are designed to restrict each container’s access 
to shared resources so that information cannot inadvertently be 
leaked from one container to another. 

2 (introduction), 2.1, 
2.2, 4.3 

SC-6, Resource 
Availability 

The maximum resources available for each container can be 
specified, thus protecting the availability of resources by not 
allowing any container to consume excessive resources. 

2.1, 2.2 

SC-7, Boundary 
Protection 

Boundaries can be established and enforced between containers 
to restrict their communications with each other. 

2 (introduction), 2.1, 
2.2, 4.3 

SC-39, Process 
Isolation 

Multiple containers can run processes simultaneously on the 
same host, but those processes are isolated from each other. 

2 (introduction), 2.1, 
2.2, 2.3, 4.3 

SI-7, Software, 
Firmware, and 
Information Integrity 

Unauthorized changes to the contents of images can easily be 
detected and the altered image replaced with a known good copy. 

2.1, 4.4, 4.5 

SI-14, Non-
Persistence 

Images running within containers are replaced as needed with 
new image versions, so data, files, executables, and other 
information stored within running images is not persistent. 

2.3, 4.4 

 1396 

Similar to Table 3, Table 4 lists the NIST Cybersecurity Framework [26] subcategories that can 1397 
be accomplished partially or completely by using container stack technology. The rightmost 1398 
column lists the sections of this document that map to each Cybersecurity Framework 1399 
subcategory. 1400 
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Table 4: NIST Cybersecurity Framework Subcategories Supported by Container Stacks 1401 

Cybersecurity Framework 
Subcategory 

Container Stack Relevancy Related Sections 
of This Document 

PR.DS-4: Adequate capacity to ensure 
availability is maintained 

The maximum resources available for each 
container can be specified, thus protecting the 
availability of resources by not allowing any 
container to consume excessive resources. 

2.1, 2.2 

PR.DS-5: Protections against data 
leaks are implemented 

Container stacks are designed to restrict each 
container’s access to shared resources so that 
information cannot inadvertently be leaked from 
one container to another. 

2 (introduction), 2.1, 
2.2, 4.3 

PR.DS-6: Integrity checking 
mechanisms are used to verify 
software, firmware, and information 
integrity 

Unauthorized changes to the contents of images 
can easily be detected and the altered image 
replaced with a known good copy. 

2.1, 4.4, 4.5 

PR.DS-7: The development and testing 
environment(s) are separate from the 
production environment 

Using containers makes it easier to have 
separate development, testing, and production 
environments because the same image can be 
used in all environments without adjustments. 

2.1, 2.3 

PR.IP-3: Configuration change control 
processes are in place 

Images can be used to help manage change 
control for applications. 

2.3, 2.4, 2.5, 3.1, 4.4 

 1402 

Information on these controls and guidelines on possible implementations can be found in the 1403 
following NIST publications: 1404 

• FIPS 140-2, Security Requirements for Cryptographic Modules 1405 
• FIPS 197, Advanced Encryption Standard (AES) 1406 
• FIPS 199, Standards for Security Categorization of Federal Information and Information 1407 

Systems 1408 
• FIPS 201-2, Personal Identity Verification (PIV) of Federal Employees and Contractors  1409 
• Draft SP 800-12 Rev. 1, An Introduction to Information Security 1410 
• Draft SP 800-16 Rev. 1, A Role-Based Model for Federal Information 1411 

Technology/Cybersecurity Training 1412 
• SP 800-18 Rev. 1, Guide for Developing Security Plans for Federal Information Systems 1413 
• SP 800-30 Rev. 1, Guide for Conducting Risk Assessments 1414 
• SP 800-34 Rev. 1, Contingency Planning Guide for Federal Information Systems 1415 
• SP 800-39, Managing Information Security Risk: Organization, Mission, and Information 1416 

System View 1417 
• SP 800-40 Rev. 3, Guide to Enterprise Patch Management Technologies 1418 
• SP 800-46 Rev. 2, Guide to Enterprise Telework, Remote Access, and Bring Your Own 1419 

Device (BYOD) Security 1420 
• SP 800-50, Building an Information Technology Security Awareness and Training 1421 

Program 1422 

https://dx.doi.org/10.6028/NIST.FIPS.140-2
https://dx.doi.org/10.6028/NIST.FIPS.197
https://dx.doi.org/10.6028/NIST.FIPS.199
https://dx.doi.org/10.6028/NIST.FIPS.199
https://dx.doi.org/10.6028/NIST.FIPS.201-2
https://csrc.nist.gov/publications/drafts/800-12r1/sp800_12_r1_draft.pdf
https://csrc.nist.gov/publications/drafts/800-16-rev1/sp800_16_rev1_3rd-draft.pdf
https://csrc.nist.gov/publications/drafts/800-16-rev1/sp800_16_rev1_3rd-draft.pdf
https://dx.doi.org/10.6028/NIST.SP.800-18r1
https://dx.doi.org/10.6028/NIST.SP.800-30r1
https://dx.doi.org/10.6028/NIST.SP.800-34r1
https://dx.doi.org/10.6028/NIST.SP.800-39
https://dx.doi.org/10.6028/NIST.SP.800-39
https://dx.doi.org/10.6028/NIST.SP.800-40r3
https://dx.doi.org/10.6028/NIST.SP.800-50
https://dx.doi.org/10.6028/NIST.SP.800-50
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• SP 800-52 Rev. 1, Guidelines for the Selection, Configuration, and Use of Transport 1423 
Layer Security (TLS) Implementations 1424 

• SP 800-53 Rev. 4, Security and Privacy Controls for Federal Information Systems and 1425 
Organizations   1426 

• SP 800-53A Rev. 4, Assessing Security and Privacy Controls in Federal Information 1427 
Systems and Organizations: Building Effective Assessment Plans 1428 

• SP 800-60 Rev. 1 Vol. 1, Guide for Mapping Types of Information and Information 1429 
Systems to Security Categories 1430 

• SP 800-61 Rev. 2, Computer Security Incident Handling Guide 1431 
• Draft SP 800-63 Rev. 3, Digital Identity Guidelines 1432 
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Appendix C—Acronyms and Abbreviations 1458 

Selected acronyms and abbreviations used in this paper are defined below. 1459 

API Application Programming Interface 

AUFS Advanced Multi-Layered Unification Filesystem 

CVE Common Vulnerabilities and Exposures 

CVSS Common Vulnerability Scoring System 

DevOps Development and Operations 

FIPS Federal Information Processing Standards 

FISMA Federal Information Security Modernization Act 

FOIA Freedom of Information Act 

GB Gigabyte 

I/O Input/Output 

IP Internet Protocol 

IT Information Technology 

ITL Information Technology Laboratory 

LXC Linux Container 

NIST National Institute of Standards and Technology 

NTFS NT File System 

OMB Office of Management and Budget 

OS Operating System 

RTM Root of Trust for Measurement 

SP Special Publication 

SSH Secure Shell 

TPM Trusted Platform Module 

VM Virtual Machine 
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Appendix D—Glossary 1461 

Container A method for packaging and securely running an application on a shared 
virtual operating system. Also known as an application container or a 
server application container. 

Container runtime The layer above the host operating system that provides management 
tools and APIs to allow users to specify how to run containers on a given 
host. 

Filesystem 
virtualization 

A form of virtualization that allows multiple containers to share the same 
physical storage, while providing each container its own unique view of 
that storage and prohibiting that container from viewing or tampering with 
the storage of other containers. 

Image A package that contains all the files required to run a container. 

Isolation The ability to keep multiple instances of software separated so that each 
instance only sees and can affect itself. 

Microservice A set of containers that work together to compose an application. 

Namespace 
isolation 

A form of isolation that limits the resources a container may interact with. 

Operating system 
virtualization 

A virtual implementation of the operating system interface that can be 
used to run applications written for the same operating system. [from [1]] 

Orchestrator A tool for centrally managing groups of container hosts, including 
monitoring resource consumption, job execution, and machine health. 

Registry A service that allows developers to easily storage images as they are 
created, tag and catalog images to aid in discovery and reuse, and find and 
reuse images that others have created. 

Resource isolation A form of isolation that limits how much of a host’s resources a given 
container can consume. 

Virtual machine A simulated environment created by virtualization. [from [1]] 

Virtualization The simulation of the software and/or hardware upon which other 
software runs. [from [1]] 
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